!!!Observing with EIS with the new antenna !![{TableOfContents}] !!About this page This Wiki page deals with typical observing constraints that you need to bear in mind when making a proposal for observing with [Hinode EIS|Main]. !!!Practical constraints !!Time !OP Periods An OP Period[1] is the period of time during which an observing programme (''plan'') is defined. e.g. from 10:23 UT on 2008/05/02 to 11:19 UT on 2008/05/04. (The start and end of each OP period are determined by the pattern of ground-station contacts, which varies from day to day.) Since the transition to stable operations under the S-band antenna, typical OP Period durations have been two or three days. Once solar activity begins to increase, and solar unpredictability increases accordingly, Hinode may consider more frequent (i.e., one-day-long) OP Periods. !Post-pointing delay In order to have co-ordinated observations by its three instruments, Hinode points as a whole satellite (using its AOCS[6]), either tracking a point to compensate for the (differential) rotation of the Sun, or focusing on a fixed point. Either way, changes in pointing by the s/c[7] take time to stabilise. After approximately 90 seconds, Hinode can track or fix on a point with better than 1" accuracy, below the spatial resolution of EIS and XRT. To avoid observing during the stabilisation of pointing, EIS observations normally start at least two minutes after a satellite re-point. To see what an Hinode re-pointing schedule looks like, take a look at an example on the Hinode Daily Operations website [here|http://www.isas.jaxa.jp/home/solar/hinode_op/cmdpln/20080626/re-point_200806260100.txt] !Eclipse Season During eclipse season[5], the line of sight between the spacecraft and the Sun grazes the Earth's atmosphere, causing attenuation (and ultimately complete absorption) of the light that would otherwise be seen by each of the instruments. This attenuation affects first the EUV and X-ray bands, then later the visible wavelength range. The duration of night-time is calculated for the visible band, and in the peak of eclipse season (around mid-July [3]) this duration is about 20 minutes. EUV absorption (night ingress) begins about 10 minutes before the calculated entry into optical night (listed as NGT_ENTRY) and ends (night egress) in the EUV about 10 minutes after the optical band exit (NGT_EXIT). Thus, the EIS operations team recommend that you leave a __ten-minute buffer around s/c night__ in eclipse season where possible. Extended-duration observations In the middle of eclipse season, EUV day lasts for approximately !South Atlantic Anomaly (SAA) On most orbits, Hinode passes over the South Atlantic Anomaly (SAA), where high-energy particles penetrate lower into the magnetosphere. During such passes, significantly more ''cosmic rays'' are observed on the EIS detector images. These passes are calculated at the same time as other orbital events (such as Eclipse Season NGT events, when appropriate), and times vary each day. Such passes normally last approximately 10 to 20 minutes (although they can be calculated to last for as little as 30 seconds). However, around 12 UT, Hinode experiences a so-called ''Golden Period'' where the SAA itself does not intercept the s/c orbit. Because the SAA passes vary in time, the start of this period can range (approximately) from 10 to 11 UT, with the end being anywhere from 14 to 16 UT. The EIS team use a rule of thumb that a 5-minute window around SAA ''events'' is sufficient to account for the variability in size of the SAA. ''N.B. the old vulnerability to changing slit/slot choice during an SAA pass is no longer relevant, following an on-board software update in August 2007'' !Buffer summary The table below summarises the time buffers recommended to separate observations from the corresponding events. || Event || Buffer | Re-point | 2 minutes after | SAA_ENTRY| 5 minutes before | SAA_EXIT | 5 minutes after | NGT_ENTRY| 10 minutes before | NGT_EXIT | 10 minutes after !!Volume Since moving to Hinode's S-band antenna for downlinks, the spacecraft typically can downlink something like 200 Mb[2] per 24 hours. This !!Do you have examples of what kind of observations are best suited for EIS? Yes :-) Go over to the [Study4LowDataVolume] page on this Wiki for examples of programmes recently developed for EIS. !!!Why can my old HOP no longer be run? !!!How is the HOP process different? !!Nomenclature ;__OP__:[1|#1]''Operation Programme'' ;__S-band antenna__:[4|#4] ''Hinode's secondary antenna, with a bandwidth of 262 kb/s.'' ;__Eclipse Season__:[5|#5] ''The portion of the year where the sun is occluded by the Earth's atmosphere for a fraction of each orbit. It lasts from late April until early September.'' ;__AOCS__:[6|#6] ''Attitude and Orbit Control System'' ;__s/c__:[7|#7] ''abbreviation of'' spacecraft ---- __Other Notes__ [2|#2]: Remember, Mb stands for mega__bits__ (1024 × 1024 bits), as distinct from MB (for mega__bytes__). 1 MB = 8Mb. [3|#3]: Is this correct? I know it's approximately true, since we start in late April, and come out of eclipse season in early September.